Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19585, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949963

RESUMO

Homology is a mathematical tool to quantify "the contact degree", which can be expressed in terms of Betti numbers. The Betti numbers used in this study consisted of two numbers, b0 (a zero-dimensional Betti number) and b1 (a one-dimensional Betti number). We developed a chromatin homology profile (CHP) method to quantify the chromatin contact degree based on this mathematical tool. Using the CHP method we analyzed the number of holes (surrounded areas = b1 value) formed by the chromatin contact and calculated the maximum value of b1 (b1MAX), the value of b1 exceeding 5 for the first time or Homology Value (HV), and the chromatin density (b1MAX/ns2). We attempted to detect differences in chromatin patterns and differentiate histological types of lung cancer from respiratory cytology using these three features. The HV of cancer cells was significantly lower than that of non-cancerous cells. Furthermore, b1MAX and b1MAX/ns2 showed significant differences between small cell and non-small cell carcinomas and between adenocarcinomas and squamous cell carcinomas, respectively. We quantitatively analyzed the chromatin patterns using homology and showed that the CHP method may be a useful tool for differentiating histological types of lung cancer in respiratory cytology.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Cromatina , Adenocarcinoma/patologia , Carcinoma de Células Escamosas/patologia
2.
Biophys Rep (N Y) ; 2(3): 100063, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36425328

RESUMO

Collective cell migration is a dynamic and interactive behavior of cell cohorts essential for diverse physiological developments in living organisms. Recent studies have revealed the importance of three-dimensional (3D) topographical confinements to regulate the migration modes of cell cohorts in tubular confinement. However, conventional in vitro assays fail to observe cells' behavior in response to 3D structural changes, which is necessary for examining the geometric regulation factors of collective migration. Here, we introduce a newly developed assay for fabricating flexible 3D structures of capillary microtunnels to examine the behavior of vascular endothelial cells (ECs) as they progress through the successive transition across wide or narrow tube structures. The microtunnels with altered diameters were formed inside gelatin-gel blocks by photo-thermal etching with micrometer-sized spot heating of the focused infrared laser absorption. The ECs migrated and spread two-dimensionally on the inner surface of gelatin capillary microtunnels as a monolayer instead of filling the entire capillary. In the straight cylindrical topographical constraint, leading ECs exhibited no apparent diameter dependence for the maximum peak migration velocity. However, widening the diameter in the narrow-wide structures caused a decrease in migration velocity following in direct proportion to the diameter increase ratio, whereas narrowing the diameter in wide-narrow microtunnels increased the speed without obvious correlation between velocity change and diameter change. The results demonstrated the ability of the newly developed flexible 3D gelatin tube structures for collective cell migration, and the findings provide insights into the dominant geometric factor of the emerging migratory modes for endothelial migration as asymmetric fluid flow-like behavior in the borderless cylindrical cell sheets.

3.
Micromachines (Basel) ; 12(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34577661

RESUMO

Agarose photothermal microfabrication technology is one of the micropatterning techniques that has the advantage of simple and flexible real-time fabrication even during the cultivation of cells. To examine the ability and limitation of the agarose microstructures, we investigated the collective epithelial cell migration behavior in two-dimensional agarose confined structures. Agarose microchannels from 10 to 211 micrometer width were fabricated with a spot heating of a focused 1480 nm wavelength infrared laser to the thin agarose layer coated on the cultivation dish after the cells occupied the reservoir. The collective cell migration velocity maintained constant regardless of their extension distance, whereas the width dependency of those velocities was maximized around 30 micrometer width and decreased both in the narrower and wider microchannels. The single-cell tracking revealed that the decrease of velocity in the narrower width was caused by the apparent increase of aspect ratio of cell shape (up to 8.9). In contrast, the decrease in the wider channels was mainly caused by the increase of the random walk-like behavior of component cells. The results confirmed the advantages of this method: (1) flexible fabrication without any pre-designing, (2) modification even during cultivation, and (3) the cells were confined in the agarose geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...